FIS activates sequential steps during transcription initiation at a stable RNA promoter.

نویسندگان

  • G Muskhelishvili
  • M Buckle
  • H Heumann
  • R Kahmann
  • A A Travers
چکیده

FIS (factor for inversion stimulation) is a small dimeric DNA-bending protein which both stimulates DNA inversion and activates transcription at stable RNA promoters in Escherichia coli. Both these processes involve the initial formation of a complex nucleoprotein assembly followed by local DNA untwisting at a specific site. We have demonstrated previously that at the tyrT promoter three FIS dimers are required to form a nucleoprotein complex with RNA polymerase. We now show that this complex is structurally dynamic and that FIS, uniquely for a prokaryotic transcriptional activator, facilitates sequential steps in the initiation process, enabling efficient polymerase recruitment, untwisting of DNA at the transcription startpoint and finally the escape of polymerase from the promoter. Activation of all these steps requires that the three FIS dimers bind in helical register. We suggest that FIS acts by stabilizing a DNA microloop whose topology is coupled to the local topological transitions generated during the initiation of transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism.

The leuV operon of Escherichia coli encodes three of the four genes for the tRNA1Leu isoacceptors. Transcription from this and other stable RNA promoters is known to be affected by a cis-acting UP element and by Fis protein interactions with the carboxyl-terminal domain of the alpha-subunits of RNA polymerase. In this report, we suggest that transcription from the leuV promoter also is activate...

متن کامل

Dynamic and structural characterisation of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101.

Kinetic, functional and structural studies of the recognition of the tetR promoter from pSC101 by E. coli RNA polymerase allowed the characterization of several steps in the specific complex formation and transcription initiation process. First, enzyme and DNA enter in a short life-time complex. An isomerization will convert this unstable complex into a closed stable one where RNA polymerase is...

متن کامل

Promoter protection by a transcription factor acting as a local topological homeostat.

Binding of the Escherichia coli global transcription factor FIS to the upstream activating sequence (UAS) of stable RNA promoters activates transcription on the outgrowth of cells from stationary phase. Paradoxically, while these promoters require negative supercoiling of DNA for optimal activity, FIS counteracts the increase of negative superhelical density by DNA gyrase. We demonstrate that b...

متن کامل

Activation of Escherichia coli rRNA transcription by FIS during a growth cycle.

rRNA transcription in Escherichia coli is activated by the FIS protein, which binds upstream of rrnp1 promoters and interacts directly with RNA polymerase. Analysis of the contribution of FIS to rrn transcription under changing physiological conditions is complicated by several factors: the wide variation in cellular FIS concentrations with growth conditions, the contributions of several other ...

متن کامل

Regulation by nucleoid-associated proteins at the Escherichia coli nir operon promoter.

The Escherichia coli K-12 nir operon promoter can be fully activated by binding of the regulator of fumarate and nitrate reduction (FNR) to a site centered at position -41.5 upstream of the transcript start, and this activation is modulated by upstream binding of the integration host factor (IHF) and Fis (factor for inversion stimulation) proteins. Thus, transcription initiation is repressed by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 1997